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Causal inference is a powerful modeling tool for explanatory analysis, which might enable current
machine learning to become explainable. How to marry causal inference with machine learning to
develop explainable artificial intelligence (XAI) algorithms is one of key steps toward to the artificial
intelligence 2.0. With the aim of bringing knowledge of causal inference to scholars of machine learning
and artificial intelligence, we invited researchers working on causal inference to write this survey from
different aspects of causal inference. This survey includes the following sections: ‘‘Estimating average
treatment effect: A brief review and beyond” from Dr. Kun Kuang, ‘‘Attribution problems in counterfac-
tual inference” from Prof. Lian Li, ‘‘The Yule–Simpson paradox and the surrogate paradox” from Prof. Zhi
Geng, ‘‘Causal potential theory” from Prof. Lei Xu, ‘‘Discovering causal information from observational
data” from Prof. Kun Zhang, ‘‘Formal argumentation in causal reasoning and explanation” from Profs.
Beishui Liao and Huaxin Huang, ‘‘Causal inference with complex experiments” from Prof. Peng Ding,
‘‘Instrumental variables and negative controls for observational studies” from Prof. Wang Miao, and
‘‘Causal inference with interference” from Dr. Zhichao Jiang.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license
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1. Estimating average treatment effect: A brief review and
beyond

Machine learning methods have demonstrated great success in
many fields, but most lack interpretability. Causal inference is a
powerful modeling tool for explanatory analysis, which might
enable current machine learning to make explainable prediction.
In this article, we review two classical estimators for estimating
causal effect, and discuss the remaining challenges in practice.
Moreover, we present a possible way to develop explainable artifi-
cial intelligence (XAI) algorithms by marrying causal inference
with machine learning.
1.1. The setup

We are interested in estimating the causal effect of a binary
variable based on potential outcome framework [1]. For each
unit indexed by i = 1, 2, . . ., n (n denotes the sample size),
we observe a treatment Ti, an outcome, and a vector of
observed variables X 2 Rp�1, where p refers to the dimension
of observed variables. The pair of potential outcomes for
each unit i is Yi 1ð Þ;Yi 0ð Þf g corresponding to its treatment
assignment Ti ¼ 1 (treated) or Ti ¼ 0 (control). The observed

outcome Yobs
i is

Yobs
i ¼ Yi Tið Þ ¼ Ti � Yi 1ð Þ þ 1� Tið Þ � Yi 0ð Þ ð1Þ

Then, the average treatment effect is defined as follows:

s ¼ E Yi 1ð Þ � Yi 0ð Þ½ � ð2Þ
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where function E �ð Þ denotes the expectation function,
and the average treatment effect for treated is defined as
st ¼ E Yi 1ð Þ � Yi 0ð ÞjTi ¼ 1½ �.

To identify s and st, we assume the un-confoundedness—that
Ti ? 1ð Þ; Yi 0ð Þ½ � Xij —and assume the overlap of the covariate distri-
bution—that 0 < p Ti ¼ 1 Xijð Þ < 1.

1.2. Two estimators

Here, we briefly introduce two of the most promising estima-
tors for treatment effect estimation and discuss them for the case
with many observed variables.

1.2.1. Inverse propensity weighting
In fully random experiments, the treatment is randomly

assigned to units, implying that Ti ? Xi. In observational studies,
however, the treatment Ti is assigned based on Xi. To remove the
confounding effect from Xi, the propensity score, denoted as
e Xið Þ ¼ Ti ¼ 1 Xijð Þ, was proposed to reweight each unit i. Then, s
can be estimated by the following:

s ¼ E
Yobs

i Ti

e Xið Þ � Yobs
i 1� Tið Þ
1� e Xið Þ

" #
ð3Þ

By combining propensity weighting and regression, it is also
possible to estimate the treatment effect with a doubly robust
method [2]. In high-dimensional settings, not all observed vari-
ables are confounders. To address this issue, Kuang et al. [3] sug-
gest separating all observed variables into two parts: the
confounders for propensity score estimation, and the adjustment
variables for reducing the variance of the estimated causal effect.

1.2.2. Confounder balancing
The other promising way to remove the confounding effect is to

balance the distribution of confounders between treated and con-
trol groups by sample reweighting with sample weights W , and to
estimate st as follows:

st ¼ E Yobs
i jTi ¼ 1

h i
� E WjY

obs
i jTj ¼ 0

h i
ð4Þ

where the sample weights W can be learned by confounder balanc-
ing [4] as follows:

W ¼ argmin
W

kE Yobs
i jTi ¼ 1

h i
� E WjY

obs
i jTj ¼ 0

h i
k
2

1
ð5Þ

In high-dimensional settings, different confounders can con-
tribute to different confounding biases. Thus, Kuang et al. [5] sug-
gest jointly learning confounder weights for confounders
differentiation, learning sample weights for confounder balancing,
and simultaneously estimating the treatment effect with a Differ-
entiated Confounder Balancing (DCB) algorithm.

1.3. Remaining challenges

There are now more promising methods available for estimat-
ing treatment effect in observational studies, but many challenges
remain in making these methods become useful in practice. Here
are some of the remaining challenges:

1.3.1. From binary to continuous
The leading estimators are designed for estimating the treat-

ment effect of a binary variable and achieve good performance in
practice. In many real applications, however, we care not only
about the cause effect of a treatment, but also about the dose
response functions, where the treatment dose may take on a con-
tinuum of values.
1.3.2. Interaction of treatments
In practice, the treatment can consist of multiple variables and

their interactions. In social marketing, the combined causal effects
of different advertising strategies may be of interest. More work is
needed on the causal analyses of treatment combination.

1.3.3. Unobserved confounders
The existence of unobserved confounders is equivalent to viola-

tion of the unconfoundedness assumption and is not testable. Con-
trolling high-dimensional variables may make unconfoundedness
more plausible but poses new challenges to propensity score esti-
mation and confounder balancing.

1.3.4. Limited on overlap
Although the overlap assumption is testable, it raises several

issues in practice, including how to detect a lack of overlap in
the covariate distributions, and how to deal with such a lack, espe-
cially in high-dimensional settings. Moreover, estimating the treat-
ment effect is only possible for the region of overlap.

Recently, related works have been proposed to address the
above challenges, including continuous treatment [6], the interac-
tion of treatments [7], unobserved confounders [8], and the limits
on overlap [9,10].

1.4. Toward causal and stable prediction

The lack of interpretability of most predictive algorithms makes
them less attractive in many real applications, especially those
requiring decision-making. Moreover, most current machine learn-
ing algorithms are correlation based, leading to instability of their
performance across testing data, whose distribution might be dif-
ferent from that of the training data. Therefore, it can be useful
to develop predictive algorithms that are interpretable for users
and stable to the distribution shift from unknown testing data.

By assuming that the causal knowledge is invariant across data-
sets, a reasonable way to solve this problem is to explore causal
knowledge for causal and stable prediction. Inspired by the
confounder-balancing techniques from the literature of causal
inference, Kuang et al. [11] propose a possible solution for causal
and stable prediction. They propose a global variable balancing
regularizer to isolate the effect of each individual variable, thus
recovering the causation between each variable and response vari-
able for stable prediction across unknown datasets.

Overall, how to deeply marry causal inference with machine
learning to develop XAI algorithms is one of key steps toward to
the artificial intelligence (AI) 2.0 [12,13], and remains many special
issues, challenges and opportunities.

2. Attribution problems in counterfactual inference

In this section, the input variable X and the outcome variable Y
are both binary.

Counterfactual inference is an important part of causal infer-
ence. Briefly speaking, counterfactual inference is to determine
the probability that the event y would not have occurred (y = 0)
had the event x not occurred (x = 0), given the fact that event x
did occur (x = 1) and event y did happen (y = 1), which can be rep-
resented as the following equation:

P yx¼0 ¼ 0jx ¼ 1; y ¼ 1ð Þ ð6Þ
where yx¼0 is a counterfactual notion, which denotes the value of y
when the setting is x = 0 and the fixing effects of other variables are
unchanged, so it is different from the conditional probability
P y x ¼ 0jð Þ. This formula reflects the probability that event y will
not occur if event x does not occur; that is, it reflects the necessity



Table 1
Experimental and non-experimental data for the example of a drug lawsuit.

Outcomes Experimental data
(number of
patients)

Non-experimental
data (number of
patients)

x = 1 x = 0 x = 1 x = 0

Deaths (y = 1) 16 14 2 28
Survivals (y = 0) 984 986 998 972
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of the causality of x and y. In social science or logical science, this is
called the attribution problem. It is also known as the ‘‘but-for” cri-
terion in jurisprudence. The attribution problem has a long history
of being studied; however, previous methods used to address this
problem have mostly been case studies, statistical analysis, experi-
mental design, and so forth; one example is the influential INUS
theory put forward by the Australian philosopher Mackie in the
1960s [14]. These methods are basically qualitative, relying on
experience and intuition. With the emergence of big data, however,
data-driven quantitative study has been developed for the attribu-
tion problem, making the inference process more scientific and
reasonable.

Attribution has a twin problem, which is to determine the prob-
ability that the event y would have occurred (y = 1) had the event x
occurred (x = 1), given that event x did not occur (x = 0) and event y
did not happen (y = 0). Eq. (7) represents this probability.

P yx¼1 ¼ 1jx ¼ 0; y ¼ 0ð Þ ð7Þ
This equation reflects the probability that event x causes event

y; that is, it reflects the sufficiency of the causality of x and y.
Counterfactual inference corresponds to human introspection,

which is a key feature of human intelligence. Inference allows peo-
ple to predict the outcome of performing a certain action, while
introspection allows people to rethink how they could have
improved the outcome, given the known effect of the action.
Although introspection cannot change the existing de facto situa-
tion, it can be used to correct future actions. Introspection is a
mathematical model that uses past knowledge to guide future
action. Unless it possesses the ability of introspection, intelligence
cannot be called true intelligence.

Introspection is also important in daily life. For example, sup-
pose Ms. Jones and Mrs. Smith both had cancer surgery. Ms. Jones
also had irradiation. Eventually, both recovered. Then Ms. Jones
rethought whether she would have recovered had she not taken
the irradiation. Obviously, we cannot infer that Ms. Jones would
have recovered had she not take the irradiation, based on the fact
that Mrs. Smith recovered without irradiation.

There is an enormous amount of this kind of problem in medical
disputes, court trials, and so forth. What we are concerned with is
what the real causality is, once a fact has occurred for a specific
individual case. In these situations, general statistics data—such
as the recovery rate with irradiation—cannot provide the explana-
tion. Calculating the necessity of causality by means of introspec-
tion and attribution inference plays a key role in these areas [14].

As yet, no general calculation method exists for Eq. (6). In cases
that involve solving a practical problem, researchers introduce a
monotonic assumption that can be satisfied in most cases; that is:

yx¼1 � yx¼0

The intuition of monotonicity is that the effect y of taking an
action (x = 1) will not be worse than that of not taking the action
(x = 0). For example, in epidemiology, the intuition of monotonicity
is not true for people who are contrarily infected (y = 0) after being
quarantined (x = 1), and who were uninfected (y = 1) before being
quarantined (x = 0). Because of the monotonicity, Eq. (6) can be
rewritten as follows:

P yx¼0 ¼ 0 x ¼ 1; y ¼ 1jð Þ ¼ P y ¼ 1ð Þ � P yx¼0 ¼ 1ð Þ
P x ¼ 1; y ¼ 1ð Þ

¼ P y ¼ 1 x� 1jð Þ � P y ¼ 1 x ¼ 0jð Þ
P y ¼ 1 x� 1jð Þ

þ P y ¼ 1 x ¼ 0jð Þ � P yx¼0 ¼ 1ð Þ
P y ¼ 1 x ¼ 1jð Þ

ð8Þ

Eq. (8) has two terms. The first term is named the attributable
risk fraction, or the excess risk ratio, and is well known in risk
statistics. This term reflects the different risk ratio conditioning
on x = 1 and x = 0. The second term is the confounding factor, which
should be particularly noticed. This term reflects the effect con-
founded by other variables. In a natural environment, a change in
y could be caused by x in two different ways: First, it could be
directly caused by a change in x; or, second, it could be caused
by other variables. This phenomenon is called confounding. The
difference P y ¼ 1 x ¼ 0jð Þ � P yx¼0 ¼ 1ð Þ denotes the degree of con-
founding. In some situations, the change in x did give rise to the
change in y, but x may not be the reason for the change in y (e.g.,
the sun rises after the cock crows). It is possible to exclude con-
founding by means of scientific experiments to determine the true
causality of the change in y. However, scientific experiments can
hardly be conducted in many social science problems, or even in
some natural science problems. In such cases, only the observa-
tional data can be obtained. Thus, the question of how to recognize
confounding from observational data in order to determine the
true causality is a fundamental problem in artificial intelligence.

In order to explain the relationship between the attributable
risk fraction and the confounding factor, and their roles in the attri-
bution problem (i.e., the necessity of causality) more specifically,
we applied the example in Ref. [15]. In this example, Mr. A goes
to buy a drug to relieve his pain and dies after taking the drug.
The plaintiff files a lawsuit to ask the manufacturer to take respon-
sibility. The manufacturer and plaintiff provide the drug test
results (i.e., experimental data) and survey results (i.e., nonexperi-
mental data), respectively. The data is illustrated in Table 1, where
x = 1 denotes taking drugs, while y = 1 denotes death.

The manufacturer’s data comes from strict drug safety experi-
ments, while the plaintiff’s data comes from surveys among
patients taking drugs by their own volition. The manufacturer
claims that the drug was approved based on the drug distribution
regulations. Although it causes a minor increase in death rate (from
0.014 to 0.016), this increase is acceptable compared with the anal-
gesic effect. Based on the traditional calculation of the attributable
risk fraction (excess risk ratio), the responsibility taken by the
manufacturer is

P y ¼ 1 x ¼ 1jð Þ � P y ¼ 1 x ¼ 0jð Þ
P y ¼ 1 x ¼ 1jð Þ ¼ 0:016� 0:014

0:016
¼ 0:125 ð9Þ

The plaintiff argues that the drug test was conducted under
experimental protocols, the subjects were chosen randomly, and
the subjects did not take the drug of their own volition. Therefore,
there is bias in the experiment, and the experimental setting differs
from the actual situation. There is a huge difference between
observational data and experimental data. Given the fact of the
death of Mr. A, the calculation of the manufacturer’s responsibility
should obey the counterfactual equation. The result is

P y¼1 x�1jð Þ�P y¼1 x¼0jð Þ
P y¼1 x�1jð Þ þP y¼1 x¼0jð Þ�P yx¼0 ¼1ð Þ

P y¼1 x¼1jð Þ
¼0:002�0:028

0:002
þ0:028�0:014

0:001
¼1

ð10Þ

Therefore, the manufacturer should take full responsibility for
the death of Mr. A.



Table 3
Smoking and lung cancer with populations stratified by gender.

Condition Males Females

Cancer No cancer Cancer No cancer

Smoking 35 15 45 105
No smoking 90 60 10 40
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A quick look shows that, based on the survey data, the death
rates of taking and not taking the drug are 0.2% and 2.8%,
respectively, which is in favor of the manufacturer. However, after
careful analysis, the confounding factor is
P y ¼ 1 x ¼ 0jð Þ � P yx¼0 ¼ 1ð Þ ¼ 0:014; that is, half of the subjects
died due to reasons other than not taking the drug. This part should
not be attributed to the drug, so the manufacturer’s responsibility
increases. Of course, there is some doubt regarding whether the
manufacturer should take full responsibility, as well as regarding
the rationality and scientificity of the calculation [16]. Neverthe-
less, this example demonstrates that there are confounding factors
that will disturb the discovery of true causality. The question of
how to determine confounding factors is a practical problem in
causal inference, naturally, and is also important in counterfactual
inference.

In data science, there are simulated data and objective data,
with the latter containing experimental data and observational
data. Although observational data are objective, easily available,
and low in cost, the confounding problems among them become
an obstacle for causal inference [17]. In particular, there may be
unknown variables (i.e., hidden variables) in an objective world.
These variables are not observed, but may have effects on known
variables—that is, the known variables should be sensitive to
unmeasured confounding due to unknown variables. In this aspect,
current studies on confounding are still in their infancy. Readers
can refer to Ref. [18] for more detail.

3. The Yule–Simpson paradox and the surrogate paradox

An association measurement between two variables may be
dramatically changed from positive to negative by omitting a third
variable, Z; this is called the Yule–Simpson paradox [19,20]. The
third variable, Z, is called a confounder. A numerical example is
shown in Table 2. The risk difference (RD) is the difference between
the proportion of lung cancer in the smoking group and that in the
no-smoking group, RD = (80/200) � (100/200) = �0.10, which is
negative. If the 400 persons listed in Table 2 are split into males
and females, however, a dramatic change can be seen (Table 3).
The RDs for both males and females are positive, at 0.10. This
means that while smoking is bad for both males and females,
separately, smoking is good for all of these persons.

The main difference between causal inference and other forms
of statistical inference is whether the confounding bias induced
by the confounder is considered. For experimental studies, it is
possible to determine which variables affect the treatment or
exposure; this is particularly true for a randomized experiment,
in which the treatment or exposure is randomly assigned to indi-
viduals, as there is no confounder affecting the treatment. Thus,
randomized experiments are the gold standard for causal infer-
ence. For observational studies, it is key to observe a sufficient
set of confounders or an instrumental variable that is independent
of all confounders. However, neither a sufficient confounder set
nor an instrumental variable can be verified by observational data
without manipulations.

In scientific studies, a surrogate variable (e.g., a biomarker) is
often measured instead of an endpoint, due to its infeasible mea-
surement; and, then, the causal effect of a treatment on the
Table 2
Smoking and lung cancer.

Condition Number of persons

Cancer No cancer Total

Smoking 80 120 200
No smoking 100 100 200
unmeasured endpoint is predicted by the effect on the surrogate.
The surrogate paradox means that the treatment has a positive
effect on the surrogate, and the surrogate has a positive effect on
the endpoint, but the treatment may have a negative effect on
the endpoint [21]. Numerical examples are given in Refs. [21,22].
This paradox also queries whether scientific knowledge is useful
for policy analysis [23]. As a real example, doctors have the knowl-
edge that an irregular heartbeat is a risk factor for sudden death.
Several therapies can correct irregular heartbeats, but they
increase mortality [24].

Yule–Simpson paradox and the surrogate paradox warn about
that a conclusion obtained from data can be inverted due to unob-
served confounders and emphasize the importance of using appro-
priate approaches to obtain data. To avoid the Yule–Simpson
paradox, first, randomization is the golden standard approach for
causal inference. Second, the use of an experimental approach to
obtain data is expected, if randomization is prohibited, as such
an approach attempts to balance all possible unobserved con-
founders between the two groups to be compared. Third, an
encouragement-based experimental approach—in which benefits
are randomly assigned to a portion of the involved persons, such
that the assignment can change the probability of their expo-
sure—can be used to design an instrumental variable. Finally, for
a pure observational approach, it is necessary to verify the assump-
tions required for causal inference using field knowledge, and to
further execute a sensitivity analysis for violations of these
assumptions. The two paradoxes also point out that a syllogism
and transitive reasoning may not be applicable to statistical
results. Statistically speaking, smoking is good for both males
and females, and the studied population consists of these males
and females; however, the statistics indicate that smoking is bad
for the population as a whole. Statistics may show that a new drug
can correct irregular heartbeats, and it is known that a regular
heartbeat can promote survival time, both statistically speaking
and for individuals; however, the new drug may still shorten the
survival time of these persons in terms of statistics.

4. Causal potential theory

Extensive efforts have been made to detect causal direction,
evaluate causal strength, and discover causal structure from obser-
vations. Examples include not only the studies based on condi-
tional independence and directed acyclic graphs (DAGs) by Pearl,
Spirtes, and many others, but also those on the Rubin causal model
(RCM), structural equation model (SEM), functional causal model
(FCM), additive noise model (ANM), linear non-Gaussian acyclic
model (LiNGAM), post-nonlinear (PNL) model, and causal genera-
tive neural networks (CGNNs), as well as the studies that discov-
ered star structure [25] and identified the so called q-diagram
[26]. To some extent, these efforts share a similar direction of
thinking. First, one presumes a causal structure (e.g., merely one
direction in the simplest case, or a DAG in a sophisticated situa-
tion) for a multivariate distribution, either modeled in parametric
form or partly inspected via statistics, which is subject to certain
constraints. Second, one uses observational data to learn the para-
metric model or estimate the statistics, and then examines
whether the model fits the observations and the constraints are
satisfied; based on this, one verifies whether the presumed causal
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structure externally describes observations the well. Typically, a
set of causal structures are presumed as candidates, among which
the best is selected.

Causal potential theory (CPT) was recently proposed as a very
different way of thinking [27]. In analogy to physics, causality is
here regarded as an intrinsic kinetic nature caused by a causal
potential energy. Without losing generality, this CPT is introduced
by starting with the consideration of a cause-effect relation
between a pair of variables, x, y,y in an environment, U. Instead
of presuming a causal structure (i.e., a specific direction), one esti-
mates a nonparametric distribution pU x; yð Þ , p x; y Ujð Þ from sam-
ples of x, y, and obtains the corresponding causal potential energy
EU x; yð Þ / � ln pU x; yð Þ in an analogy based on the Gibbs distribu-
tion. In such a perspective of causal dynamics, an event occurring
at x, y is associated with EU x; yð Þ that yields a force gx; gy

� �
to

cause subsequent events by the dynamics _xt ; _yt½ � / � gx; gy

� �
, driv-

ing the information flow or causal process toward an area with the
lowest energy or, equivalently, toward an area in which events
have high chances to occur, using the notations gU , rUEU and
_ut , du=dt. That is, CPT regards causality as an intrinsic nature of
the dynamics _xt ; _yt½ � / � gx; gy

� �
and discovers causality by analyz-

ing gx; gy

� �
.

Table 4 shows two roads for analyzing CPT causality. RoadA is
proceeded by testing a ‘‘Yes” or ‘‘No” answer on the mutual inde-
pendence between gy, y and on that between gx, x, resulting in four
types of Y-N combinations. The first two types indicate two types of
causality. The third type, Y-Y, indicates the independence between
x, y—that is, indicates that there is no relation between them. The
last type, N-N, indicates ‘‘unclear ?”—that is, further study is needed
to determine whether a causal relation still occurs locally, or even
reciprocally, in some regions of x, y, although there is no causal rela-
tion detected globally between x, y. RoadA needs an independence
test. In contrast, RoadB turns the problem into supervised learning,
with x, y as inputs into a neural net to fit two gradient components
gx; gy

� �
, each of which is fit by a different neural net, with one or

both of x, y as inputs, respectively. An appropriate one is chosen
according to not only fit, but also simplicity. Table 4 lists four types
of outcomes based on this method [27].

It is possible to seek a certain estimator to obtain gx, gy directly
from samples xt , yt , where t = 1, . . ., N and N refers to the sample
size. It is also possible to obtain gx, gy indirectly, by estimating
pU x; yð Þ first; that is, by performing a kernel estimate

ph x; yð Þ ¼ 1
N

PN
t¼1G x; y xt ; yt ; h2I

���� �
, where there is a Gaussian of

mean m and variance r2. Alternatively, it is possible to obtain pU

by one presumed causal structure, and to perform CPT analyses
on this pU .

Experiments on the CauseEffectPairs (CEP) benchmark have
demonstrated that a preliminary and simple implementation of
CPT has achieved performances that are comparable with ones
achieved by state-of-art methods.

Further development is to explore the estimation of causal
structure between multiple variable distributions and multiple
variables, possibly along two directions. One is simply integrating
Table 4
Two roads for analyzing CPT causality.

rUEU y ? x x ? y

RoadA RoadB RoadA Roa

gx Dependent of y n(x, y) + e y n xð Þ
gy x g(y) + e Dependent of x g x;ð

y In this section, we reuse x, y to denote a pair variable, their relationship might be
cause and effect.
the methods in Table 4 into the famous Peter–Clark (PC) algorithm
[28], especially on edges that are difficultly identified by indepen-
dent and conditional independent tests. The other is turning the
conditions that gy is uncorrelated (or independent) of x and that
gx is uncorrelated (or independent) of y into multivariate polyno-
mial equations, and adding the equations into the q-diagram equa-
tions in Ref. [26], e.g., Eq. (29) and Eq. (33), to get an augmented
group of polynomial equations. Then, the well known Wen-Tsun
Wu method may be adopted to check whether the equations have
unique or a finite number of solutions.
5. Discovering causal information from observational data

Causality is a fundamental notion in science, and plays an
important role in explanation, prediction, decision-making, and
control [28,29]. There are two essential problems to address in
modern causality research. One essential problem is the identifica-
tion of causal effects, that is, identifying the effects of interven-
tions, given the partially or completely known causal structure
and some observed data; this is typically known as ‘‘causal infer-
ence.” For advances in this research direction, readers are referred
to Ref. [29] and the references therein. In causal inference, causal
structure is assumed to be given in advance—but how can we find
causal structure if it is not given? A traditional way to discover cau-
sal relations resorts to interventions or randomized experiments,
which are too expensive or time-consuming in many cases, or
may even be impossible from a practical standpoint. Therefore,
the other essential causality problem, which is how to reveal cau-
sal information by analyzing purely observational data, has drawn
a great deal of attention [28].

In the last three decades, there has been a rapid spread of inter-
est in principled methods causal discovery, which has been driven
in part by technological developments. These technological devel-
opments include the ability to collect and store big data with huge
numbers of variables and sample sizes, and increases in the speed
of computers. In domains containing measurements such as satel-
lite images of weather, functional magnetic resonance imaging
(fMRI) for brain imaging, gene-expression data, or single-
nucleotide polymorphism (SNP) data, the number of variables
can range in the millions, and there is often very limited back-
ground knowledge to reduce the space of alternative causal
hypotheses. Causal discovery techniques without the aid
of an automated search then appear to be hopeless. At the same
time, the availability of faster computers with larger memories
and disc space allow for practical implementations of computa-
tionally intensive automated algorithms to handle large-scale
problems.

It is well known in statistics that ‘‘causation implies correlation,
but correlation does not imply causation.” Perhaps it is fairer to say
that correlation does not directly imply causation; in fact, it has
become clear that under suitable sets of assumptions, the causal
structure (often represented by a directed graph) underlying a
set of random variables can be recovered from the variables’
observed data, at least to some extent. Since the 1990s, conditional
x y x?y

dB RoadA RoadB RoadA RoadB

þ e y n xð Þ þ e Dependent of y n x; yð Þ þ e
yÞ þ e x g(y) + e Dependent of x g x; yð Þ þ e
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independence relationships in the data have been used for the pur-
pose of estimating the underlying causal structure. Typical (condi-
tional independence) constraint-based methods include the PC
algorithm and fast causal inference (FCI) [28]. Under the assump-
tion that there is no confounder (i.e., unobserved direct common
cause of two measured variables), the result of PC is asymptotically
correct. FCI gives asymptotically correct results even when there
are confounders. These methods are widely applicable because
they can handle various types of causal relations and data distribu-
tions, given reliable conditional independence testing methods.
However, they may not provide all the desired causal information,
because they output (independence) equivalence classes—that is, a
set of causal structures with the same conditional independence
relations. The PC and FCI algorithms output graphical representa-
tions of the equivalence classes. In cases without confounders,
there also exist score-based algorithms that estimate causal struc-
ture by optimizing some properly defined score function. The
greedy equivalence search (GES), among them, is a widely used
two-phase procedure that directly searches over the space of
equivalence classes.

In the past 13 years, it has been further shown that algorithms
based on properly constrained FCMs are able to distinguish
between different causal structures in the same equivalence class,
thanks to additional assumptions on the causal mechanism. An
FCM represents the outcome or effect variable Y as a function of
its direct causes X and some noise term E, that is, Y ¼ f X; Eð Þ, where
E is independent of X. It has been shown that, without constraints
on function f, for any two variables, one of them can always be
expressed as a function of the other and independent noise [30].
However, if the functional classes are properly constrained, it is
possible to identify the causal direction between X and Y because
for wrong directions, the estimated noise and hypothetical cause
cannot be independent (although they are independent for the
right direction). Such FCMs include the LiNGAM [31], where causal
relations are linear and noise terms are assumed to be non-
Gaussian; the post-nonlinear (PNL) causal model [32], which con-
siders nonlinear effects of causes and possible nonlinear sensor/
measurement distortion in the data; and the nonlinear ANM
[33,34], in which causes have nonlinear effects and noise is addi-
tive. For a review of these models and corresponding causal discov-
ery methods, readers are referred to Ref. [30].

Causal discovery exploits observational data. The data are pro-
duced not only by the underlying causal process, but also by the
sampling process. In practice, for reliable causal discovery, it is
necessary to consider specific challenges posed in the causal and
sampling processes, depending on the application domain. For
example, for multivariate time series data such as mRNA expres-
sion series in genomics and blood-oxygenation-level-dependent
(BOLD) time series in neuropsychology, finding the causal dynam-
ics generating such data is challenging for many reasons, including
nonlinear causal interactions, a much lower data-acquisition rate
compared with the underlying rates of change, feedback loops in
the causal model, the existence of measurement error, non-
stationarity of the process, and possible unmeasured confounding
causes. In clinical studies, there is often a large amount of missing
data. Data collected on the Internet or in hospital often suffer from
selection bias. Some datasets involve both mixed categorical and
continuous variables, which may pose difficulties in conditional
independence tests and in the specification of appropriate forms
of the FCM. Many of these issues have recently been considered,
and corresponding methods have been proposed to address them.

Causal discovery has benefited a great deal from advances in
machine learning, which provide an essential tool to extract infor-
mation from data. On the other hand, causal information describes
properties of the process that render a set of constraints on the
data distribution and is able to facilitate understanding and solve
a number of learning problems involving distribution shift or con-
cerning the relationship between different factors of the joint dis-
tribution. In particular, for learning under data heterogeneity, it is
naturally helpful to learn and model the properties of data hetero-
geneity, which then benefit from causal modeling. Such learning
problems include domain adaptation (or transfer learning) [35],
semi-supervised learning, and learning with positive and unla-
beled examples. Leveraging causal modeling for recommender sys-
tems and reinforcement learning is becoming an active research
field in recent years.
6. Formal argumentation in causal reasoning and explanation

In this section, we sketch why and how formal argumentation
can play an important role in causal reasoning and explanation.
Reasoning in argumentation is realized by constructing, compar-
ing, and evaluating arguments [36]. An argument commonly con-
sists of a claim that may be supported by premises, which can be
observations, assumptions, or intermediate conclusions of some
other arguments. The claim, the premises, and the inference rela-
tion between them may be the subject of rebuttals or counter-
arguments [37]. An argument can be accepted only when it sur-
vives all attacks. In AI, formal argumentation is a general formalism
for modeling defeasible reasoning. It provides a natural way for
justifying and explaining causation, and is complementary to
machine learning approaches, for learning, reasoning, and explain-
ing cause-and-effect relations.

6.1. Nonmonotonicity and defeasibility

Causal reasoning is the process of identifying causality, that is,
the relationship between a cause and its effect, which is often
defeasible and nonmonotonic. On the one hand, causal rules are
typically defeasible. A causal rule may be represented in the form
‘‘c causes e” where e is some effect and c is a possible cause. The
causal connective is not a material implication, but a defeasible
conditional with strength or uncertainty. For example, ‘‘turning
the ignition key causes the motor to start, but it does not imply
it, since there are some other factors such as there being a battery,
the battery not being dead, there being gas, and so on” [38]. On the
other hand, causal reasoning is nonmonotonic, in the sense that
causal connections can be drawn tentatively and retracted in light
of further information. It is usually the case that c causes e, but c
and d jointly do not cause e. For example, an agent believes that
turning the ignition key causes the motor to start, but when it
knows that the battery is dead, it does not believe that turning
the ignition key will cause the motor to start. In AI, this is the
famous qualification problem. Since the potentially relevant fac-
tors are typically uncertain, it is not cost effective to reason explic-
itly. So, when doing causal inference, people usually ‘‘jump” to
conclusions and retract some conclusions when needed. Similarly,
reasoning from evidence to cause is nonmonotonic. If an agent
observes some effect e, it is allowed to hypothesize a possible cause
c. The reasoning from the evidence to a cause is abductive, since for
some evidence, one may accept an abductive explanation if no
better explanation is available. However, when new explanations
are generated, the old explanation might be discarded.

6.2. Efficiency and explainability

From a perspective of computation, monotonicity is a crucial
property of classical logic, which means that each conclusion
obtained by local computation using a subset of knowledge is
equal to the one made by global computation using all the knowl-
edge. This property does not hold in nonmonotonic reasoning and,
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therefore, the computation could be highly inefficient. Due to the
nonmonotonicity of causal reasoning, in order to improve effi-
ciency, formal argumentation has been evidenced to be a good can-
didate, by comparing it with some other nonmonotonic formalisms
such as default logic and circumscription. The reason is that in for-
mal argumentation, computational approaches may take advan-
tage of the divide-and-conquer strategy and maximal usage of
existing computational results in terms of the reachability between
nodes in an argumentation graph [39]. Another important property
of causal reasoning in AI is explainability. Traditional nonmono-
tonic formalisms are not ideal for explanation, since all the proofs
are not represented in a human understandable way. Since the
purpose of explanation is to let the audience understand, the cog-
nitive process of comparing and contrasting arguments is signifi-
cant [37]. Argumentation provides such a way by exchanging
arguments in terms of justification and argument dialogue [40].

6.3. Connections to machine learning approaches

In explainable AI, there are two components: the explainable
model and the explanation interface. The latter includes reflexive
explanations that arise directly from the model and rational expla-
nations that come from reasoning about the user’s beliefs. To real-
ize this vision, it is natural to combine argumentation and machine
learning, in the sense that knowledge is obtained by machine
learning approaches, while the reasoning and explanation are real-
ized by argumentation. Since argumentation provides a general
approach for various kinds of reasoning in the context of disagree-
ment, and can be combined with some uncertainty measures, such
as probability and fuzziness, it is very flexible to model the knowl-
edge learned from data. An example is when a machine learns fea-
tures and produces an explanation, such as ‘‘This face is angry,
because it is similar to these examples, and dissimilar from those
examples.” This is an argument, which might be attacked by other
arguments. And, in order to measure the uncertainty described by
some words such as ‘‘angry,” one may choose to use possibilistic or
probabilistic argumentation [41]. Different explanations may be in
conflict. For instance, there could be some cases invoking specific
examples or stories that support a choice, and rejections of an
alternative choice that argue against less-preferred answers based
on analytics, cases, and data. By using argumentation graphs, these
kinds of support-and-attack relations can be conveniently modeled
and can be used to compute the status of conflicting arguments for
different choices.

7. Causal inference with complex experiments

The potential outcomes framework for causal inference starts
with a hypothetical experiment in which the experimenter can
assign every unit to several treatment levels. Every unit has poten-
tial outcomes corresponding to these treatment levels. Causal
effects are comparisons of the potential outcomes among the same
set of units. This is sometimes called the experimentalist’s
approach to causal inference [42]. Readers are referred to Refs.
[43–46], for textbook discussions.

7.1. Randomized factorial experiments

Splawa-Neyman [47] first formally discussed the following
randomization model. In an experiment with n units, the
experimenter randomly assigns (n1, . . ., nJ) units to treatment

levels (1, . . ., J), where n ¼ PJ
j¼1nj. Unit i has potential outcomes

Yi 1ð Þ; :::;Yi Jð Þf g, with Yi jð Þ being the hypothetical outcome if unit
i receives treatment level j. With potential outcomes, we can define
causal effects; for example, the comparison between treatment
levels j and j0 as s j; j0
� � ¼ n�1Pn

i¼1 Yi jð Þ � Yi j
0� �	 


: Let Ti jð Þ be the
indicator if unit i actually receives treatment level j. Let
Yi ¼

PJ
j¼1Ti jð ÞYi jð Þ be the observed outcome of unit i. With

observed data Ti 1ð Þ; :::; Ti Jð Þ; Yif gni¼1, Splawa-Neyman [47] pro-
posed to use bs j; j0

� � ¼ n�1
j

Pn
i¼1Ti jð ÞYi � n�1

j0
Pn

i¼1Ti j
0� �
Yi as an esti-

mator for s j; j0
� �

. He showed that bs j; j0
� �

is unbiased with

variance S2 jð Þ
nj

þ S2 j0ð Þ
nj0

� S2 j�j0ð Þ
n , where S2 jð Þ, S2 j0

� �
and S2 j� j0

� �
are

the sample variances of Yi jð Þ, Yi j
0� �

and Yi jð Þ � Yi j
0� �
. Note that

the randomness comes from the treatment indicators with all the
potential outcomes fixed. Splawa-Neymanhas [47] further dis-
cussed variance estimation and the large-sample confidence
interval.

We can extend the framework from Ref. [47] to a general causal
effect defined as s ¼ n�1Pn

i¼1si where si ¼
PJ

j¼1cjYi jð Þ is the indi-

vidual effect and the cj are contrast matrices with
PJ

j¼1cj ¼ 0. With
appropriately chosen contrast matrices, the special cases include
analysis of variance [48] and factorial experiments [49,50]. Fur-
thermore, with an appropriately chosen subset of units, the special
cases include subgroup analysis, post-stratification [51], and peer
effects [52]. Ref. [53] provides the general forms of central limit
theorems under this setting for asymptotic inference. Ref. [54] dis-
cusses split-plot designs, and Ref. [55] discusses general designs.
7.2. The role of covariates in the analysis of experiments

Splawa-Neyman randomization model [47] also allows for the
use of covariates to improve efficiency without strong modeling
assumptions. In the case with a binary treatment, for unit i, let
{Y(1), Y(0)} be the potential outcomes, Ti be the binary treatment
indicator, and xi be pretreatment covariates. The average causal
effect s ¼ n�1Pn

i¼1 Yi 1ð Þ � Yi 0ð Þf g has an unbiased estimatorbs ¼ n�1
1

Pn
i¼1TiYi � n�1

0

Pn
i¼1 1� Tið ÞYi. Fisher [56] suggested using

the analysis of covariance to improve efficiency; that is, running
a least squares fit of Yi on Ti and xi and using the coefficient of Ti

to estimate s. Ref. [57] uses the model from Ref. [47] to show that
Fisher’s analysis of the covariance estimator is inferior because it
can be even less efficient than bs and the ordinary least squares
can give an inconsistent variance estimate. Ref. [58] proposes a
simple correction: First, center covariates to have mean �x ¼ 0;
second, run a least squares fit of Yi on Ti; xi; Ti � xið Þ and use the
coefficient of Ti to estimate s, and third, use the Eicker–Huber–
White variance estimator [59–61]. With large samples, the estima-
tor from Ref. [58] is at least as efficient as bs, and that researcher’s
variance estimate is consistent for the true variance of bs.

Ref. [62] extends to the setting with high-dimensional covari-
ates and replaces the least squares fit by the least absolute shrink-
age and selection operator (LASSO) [63]. Ref. [64] examines the
theoretical boundary of the estimator from Ref. [58], allowing for
a diverging number of covariates. Ref. [65] investigates treatment
effect heterogeneity using the least squares fit of Yi on
Ti; xi; Ti � xið Þ. Ref. [66] discusses covariate adjustment in a
factorial experiment, and Ref. [67] discusses covariate adjustment
in general designs.
7.3. The role of covariates in the design of experiments

An analyzer can use covariates to improve the estimation effi-
ciency. As a dual, a designer can use covariates to improve the
covariate balance and consequently improve the estimation effi-
ciency. Ref. [68] hints at the idea of re-randomization—that is, only
accepting random allocation that ensures covariate balance. In par-
ticular, we accept a random allocation (T1, . . ., Tn) if and only if
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bs 0
x

nS2x
n1n0ð Þ

n o�1bsx � a, where bsx ¼ n�1
1

Pn
i¼1Tixi � n�1

0

Pn
i¼1 1� Tið Þxi,

S2x ¼ n� 1ð Þ�1 Pn
i¼1

xi � x̂ð Þ xi � x̂ð Þ0and a > 0 is a predetermined con-

stant. Ref. [69] formally discusses its statistical properties under
the constant treatment effect model with equal group sizes and
Gaussian covariates. Ref. [70] develops its asymptotic theory with-
out these assumptions. In particular, Ref. [70] shows that bs has a
non-Gaussian limiting distribution and is more concentrated at s
under re-randomization than under complete randomization. A
consequence of the result from Ref. [70] is that when a � 0, the
asymptotic variance of bs under re-randomization is identical to
the estimator from Ref. [58] under complete randomization. There-
fore, we can view re-randomization as the dual of regression
adjustment.

Ref. [71] proposes a re-randomization scheme that allows for
tiers of covariates, and Ref. [70] derives its asymptotic properties.
Refs. [72,73] extend re-randomization to factorial experiments,
and Ref. [74] proposes sequential re-randomization.
7.4. Final remarks

Following Ref. [47], I have focused on the repeated sampling
properties of estimators with randomized experiments. Alterna-
tively, Fisher randomization tests are finite-sample exact for any
test statistics and for any designs, under the sharp null hypothesis
that Yi 1ð Þ ¼ � � � ¼ Yi Jð Þ for all units i = 1, . . ., J [46,75,76]. Refs.
[77,78] propose the use of covariate adjustment in randomization
tests, and Ref. [69] proposes the use of randomization tests to ana-
lyze re-randomization. Refs. [79–81] apply randomization tests to
experiments with interference. Refs. [48,50,82] discuss the proper-
ties of randomization tests for weak null hypotheses. Refs. [83–85]
invert randomization tests to construct exact confidence intervals.
Finally, Ref. [86] discusses different inferential frameworks from
the missing data perspective.
8. Instrumental variables and negative controls for
observational studies

In a great deal of scientific research, the ultimate goal is to
evaluate the causal effect of a given treatment or exposure on a
given outcome or response variable. Since the work published in
Ref. [75], randomized experiments have become a powerful and
influential tool for the evaluation of causal effects; however, they
are not feasible in many situations due to ethical issues, expensive
cost, or imperfect compliance. In contrast, observational studies
offer an important source of data for scientific research. However,
causal inference with observational studies is challenging, because
confounding may arise. Confounders are covariates that affect both
the primary exposure and the outcome. In the presence of unmea-
sured confounders, statistical association does not imply causation,
and vice versa, which is known as the Yule–Simpson paradox
[19,20]. Refs. [87,88] review the concepts of confounding, and Refs.
[2,89,90] discuss methods for the adjustment of observed con-
founders, such as regressing analysis, propensity score, and inverse
probability weighting, as well as doubly robust methods. Here, we
review two methods for the adjustment of unmeasured confound-
ing: the instrumental variable approach and the negative control
approach.

Throughout, we let X and Y denote the exposure and outcome of
interest, respectively, and we let Uy denote an unmeasured con-
founder; for simplicity, we omit observed confounders, which can
y In this section, we reuse U to denote the unmeasured confounders. Please note
that, U was used to denote an environment in Section 4.
be incorporated in the following by simply conditioning on them.
We use lowercase letters to denote realized values of random vari-
ables—for example, y for a realized value of Y.

The instrumental variable approach, which was first proposed
in econometrics literature in the 1920s [91,92], has become a
popular method in observational studies to mitigate the problem
of unobserved confounding. In addition to the primary treatment
and outcome, this approach involves an instrumental variable Z
that satisfies three core assumptions:

(1) It has no direct effect on the outcome, that is, Z ? Yj X; Uð Þ
(exclusion restriction);
(2) It is independent of the unobserved confounder, that is,
Z ? U (independence);
(3) It is associated with the exposure, that is, (relevance).

Under these three assumptions, only certain upper and lower
bounds of causal effects can be derived [93,94], and extra model
assumptions are required to achieve identification. The SEM
[91,95] and structural mean model [96] are commonly used mod-
els, which in fact can achieve identification by assuming effect
homogeneity (see Section 16 of Ref. [97]). One such example is
the linear regression model E Y X; Ujð Þ ¼ aþ bX þ U, which encodes
a constant causal effect in the regression coefficient b and yields
the well-known instrumental variable identification biv ¼ rzy=rxz.
Alternatively, in certain situations, especially when Z is a binary
treatment assignment that occurs before X, it is sometimes reason-
able to assume effect monotonicity: The effect of Z on X is mono-
tone, that is, XZ=1 � XZ=0, which means that no one accepts the
opposite treatment of this assignment. The monotonicity assump-
tion leads to identification of the complier average causal effect
(CACE) = E(Y1 � Y0 j X1 = 1, X0 = 0), as shown in Ref. [98]. As an
extension of the single instrument case, Refs. [99,100] consider
variable selection and estimation with high-dimensional instru-
mental variables.

However, in practice, the instrumental variable assumptions
may not be met, and the approach is highly sensitive to the viola-
tion of any of them. Validity checking and violation detection of
these assumptions are important before applying the instrumental
variable approach, and have been attracting researchers’ attention
[94,101]. In case of a violation of the core assumptions, identifica-
tion of the causal effect is often impossible, and bounding and sen-
sitivity analysis methods [102,103] have been proposed for causal
inference.

Alternatively, we have formally established the double negative
control method [104–106] for the adjustment of unmeasured con-
founding. The negative control approach we have proposed also
offers a promising mitigation tool for invalid instrumental vari-
ables. Negative control variables are classified into two classes:
negative control outcome W : W ? XjU, and negative con-
trol exposure Z : Z ? Yj U;Xð Þ, Z ? Wj U;Xð Þ. The negative control
exposure Z can be viewed as a generalization of an instrumental
variable that fails to be independent of the unmeasured con-
founder, and the negative control outcome W is used to eliminate
the bias. Given both a negative control exposure and outcome,
Refs. [104,106] show that the average causal effect is non-
parametrically identified under certain regularity conditions. For
illustration, consider again the regression model
E Y X; Ujð Þ ¼ aþ bX þ U, and assume that E(WjU) also follows a lin-
ear model; then, b can be identified by the following:

bnc ¼
rxwrzy � rxyrzw

rxwrxz � rxxrzw

This formula does apply to a valid instrumental variable; in
which case, Z ? U, and thus, rzw = 0, according to the negative con-
trol outcome assumption. Therefore, the instrumental variable
identification can be viewed as a special case of the negative con-
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trol approach. However, in contrast to the instrumental variable,
negative controls require weak assumptions that are more likely
to hold in practice. Refs. [107,108] provide elegant surveys on
the existence of negative controls in observational studies. Refs.
[105,109] point out that negative controls are widely available in
time series studies, as long as no feedback effect is present, such
as studies about air pollution and public health.

Refs. [107,109,110] examine the use of negative controls for
confounding detection or bias reduction when a solely negative
control exposure or outcome is available but are unable to achieve
identification. Refs. [111,112] propose the use of multiple negative
control outcomes to remove confounding in statistical genetics but
must rest on a factor analysis model.

9. Causal inference with interference

The stable unit treatment value assumption plays an important
role in the classical potential outcomes framework. It assumes that
there is no interference between units [76]. However, interference
is likely to be present in many experimental and observational
studies, where units socially or physically interact with each other.
For example, in educational or social sciences, people enrolled in a
tutoring or training program may have an effect on those not
enrolled due to the transmission of knowledge [113,114]. In epi-
demiology, the prevention measures for infectious diseases may
benefit unprotected people by reducing the probability of conta-
gion [115,116]. In these studies, one unit’s treatment can have a
direct effect on its own outcome as well as a spillover effect on
the outcome of other units. The direct and spillover effects are of
scientific or societal interest in real problems; they enable an
understanding of the mechanism of a treatment effect, and provide
guidance for policy making and implementation.

In the presence of interference, the number of potential out-
comes of a unit grows exponentially with the number of units.y

As a result, it is intractable to estimate the direct and spillover effects
without restriction in the literature on the estimation of treatment
effects with interference structure. There has been a rapidly growing
interest in interference (see Ref. [117] for a recent review). A signif-
icant direction of work focuses on limited interference within non-
overlapping clusters and assumes that there is no interference
between clusters [52,114,118–122]. This is referred to as the partial
interference assumption [114]. Recently, several researchers have
considered the relaxation of the partial interference assumption to
account for a more general structure of interference (e.g., Refs.
[123–126]). The variance estimation is more complicated under
interference. As pointed out in Ref. [118], it is difficult to calculate
the variances for the direct and spillover effects even under partial
interference. In model-free settings, a typical assumption for obtain-
ing valid variance estimation is that the outcome of a unit depends
on the treatments of other units only through a function of the treat-
ments. Ref. [118] provides a variance estimator under the stratified
interference assumption, and Ref. [124] generalizes it under a
weaker assumption.

Another direction of work targets new designs to estimate
treatment effects based on the interference structure. Under the
partial interference assumption, Ref. [118] proposes the two-
stage randomized experiment as a general experimental solution
to the estimation of the direct and spillover effects. In more com-
plex structures such as social networks, researchers have proposed
several designs for the point and variance estimation of the treat-
ment effects [127–129].

For the inference under interference, Refs. [130,131] rely on
models for the potential outcomes. Ref. [79] develops a conditional
y If the total number of units is N, then there are 2N potential outcomes for each
unit.
randomization test for the null hypothesis of no spillover effect.
Ref. [80] extends this test to a larger class of hypotheses restricted
to a subset of units, known as focal units. Building on this work,
Ref. [132] provides a general procedure for obtaining powerful
conditional tests.

Interference brings up new challenges. First, the asymptotic
properties require advanced techniques deriving. Ref. [133] inves-
tigates the consistency of the difference in the means estimator
when the number of the units that can be interfered with does
not grow as quickly as the sample size. Ref. [134] develops the cen-
tral limit theorem for direct and spillover effects under partial
interference and stratified interference. Ref. [52] provides the cen-
tral limit theorem for a peer effect under partial interference and
stratified interference. However, under general interference, the
asymptotic properties remain unsolved—even for the simplest dif-
ference in the means estimator. Second, interference becomes even
harder to deal with when data complications are present. Refs.
[120,121,135,136] consider noncompliance in an interference set-
ting. Ref. [137] examines the censoring of time-to-event data in
the presence of interference. However, for other data complica-
tions such as missing data and measurement error, no methods
are yet available. Third, most of the literature focuses on the direct
effect and the spillover effect. However, interference may be pre-
sent in other settings, such as mediation analysis (see Ref. [138]
for a mediation analysis under interference) and longitudinal stud-
ies, where different quantities are of interest. As a result, it is nec-
essary to generalize the commonly used methods in these settings
to account for the interference between units.
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